The strong chromatic index of Halin graphs

نویسندگان

  • Hsin-Hao Lai
  • Ko-Wei Lih
  • Ping-Ying Tsai
چکیده

The Strong Chromatic Index of Halin Graphs By Ziyu Hu A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they have adjacent endpoints. The strong chromatic index of a graph G, denoted by χs(G), is the minimum number of colors needed for a strong edge coloring of G. A Halin graph G is a planar graph constructed by connecting all leaves of a characteristic tree T without vertices of degree two through a cycle. If a Halin graph G is different from Ne2, Ne4, and any wheel, then we prove χs(G) 6 2∆(G) + 1 , where ∆(G) is the maximum degree of G. If, additionally, ∆(G) = 4, we prove χs(G) 6 χ ′ s(T ) + 2, where T is the characteristic tree of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

Algorithms for the Strong Chromatic Index of Halin Graphs, Distance-Hereditary Graphs and Maximal Outerplanar Graphs

We show that there exist linear-time algorithms that compute the strong chromatic index of Halin graphs, of maximal outerplanar graphs and of distance-hereditary graphs.

متن کامل

A linear-time algorithm for the strong chromatic index of Halin graphs

We show that there exists a linear-time algorithm that computes the strong chromatic index of Halin graphs.

متن کامل

Strong edge-coloring for cubic Halin graphs

A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open...

متن کامل

On the strong chromatic index of cubic Halin graphs

A strong edge coloring of a graph G is an assignment of colors to the edges of G such that two distinct edges are colored differently if they are incident to a common edge or share an endpoint. The strong chromatic index of a graph G, denoted sχ′(G), is the minimum number of colors needed for a strong edge coloring of G. A Halin graph G is a plane graph constructed from a tree T without vertice...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 312  شماره 

صفحات  -

تاریخ انتشار 2012